Copied to
clipboard

G = S32×C8order 288 = 25·32

Direct product of C8, S3 and S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: S32×C8, C2419D6, C3⋊C829D6, D6.8(C4×S3), (S3×C24)⋊11C2, (C4×S3).43D6, C322(C22×C8), (C3×C24)⋊19C22, (S3×Dic3).3C4, C6.D6.5C4, Dic3.11(C4×S3), C12.29D612C2, (S3×C12).55C22, (C3×C12).135C23, C12.134(C22×S3), C324C825C22, C31(S3×C2×C8), C2.1(C4×S32), C6.1(S3×C2×C4), (S3×C3⋊C8)⋊14C2, C3⋊S32(C2×C8), (C2×S32).5C4, (C4×S32).6C2, C4.81(C2×S32), (C8×C3⋊S3)⋊10C2, (C3×S3)⋊1(C2×C8), (C3×C3⋊C8)⋊33C22, (S3×C6).8(C2×C4), (C3×C6).1(C22×C4), (C4×C3⋊S3).84C22, C3⋊Dic3.29(C2×C4), (C3×Dic3).15(C2×C4), (C2×C3⋊S3).25(C2×C4), SmallGroup(288,437)

Series: Derived Chief Lower central Upper central

C1C32 — S32×C8
C1C3C32C3×C6C3×C12S3×C12C4×S32 — S32×C8
C32 — S32×C8
C1C8

Generators and relations for S32×C8
 G = < a,b,c,d,e | a8=b3=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 498 in 163 conjugacy classes, 64 normal (18 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, S3, C6, C6, C8, C8, C2×C4, C23, C32, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C2×C8, C22×C4, C3×S3, C3⋊S3, C3×C6, C3⋊C8, C3⋊C8, C24, C24, C4×S3, C4×S3, C2×Dic3, C2×C12, C22×S3, C22×C8, C3×Dic3, C3⋊Dic3, C3×C12, S32, S3×C6, C2×C3⋊S3, S3×C8, S3×C8, C2×C3⋊C8, C2×C24, S3×C2×C4, C3×C3⋊C8, C324C8, C3×C24, S3×Dic3, C6.D6, S3×C12, C4×C3⋊S3, C2×S32, S3×C2×C8, S3×C3⋊C8, C12.29D6, S3×C24, C8×C3⋊S3, C4×S32, S32×C8
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, C23, D6, C2×C8, C22×C4, C4×S3, C22×S3, C22×C8, S32, S3×C8, S3×C2×C4, C2×S32, S3×C2×C8, C4×S32, S32×C8

Smallest permutation representation of S32×C8
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 35 25)(2 36 26)(3 37 27)(4 38 28)(5 39 29)(6 40 30)(7 33 31)(8 34 32)(9 44 23)(10 45 24)(11 46 17)(12 47 18)(13 48 19)(14 41 20)(15 42 21)(16 43 22)
(1 15)(2 16)(3 9)(4 10)(5 11)(6 12)(7 13)(8 14)(17 39)(18 40)(19 33)(20 34)(21 35)(22 36)(23 37)(24 38)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 41)
(1 25 35)(2 26 36)(3 27 37)(4 28 38)(5 29 39)(6 30 40)(7 31 33)(8 32 34)(9 44 23)(10 45 24)(11 46 17)(12 47 18)(13 48 19)(14 41 20)(15 42 21)(16 43 22)
(1 15)(2 16)(3 9)(4 10)(5 11)(6 12)(7 13)(8 14)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)(33 48)(34 41)(35 42)(36 43)(37 44)(38 45)(39 46)(40 47)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,35,25)(2,36,26)(3,37,27)(4,38,28)(5,39,29)(6,40,30)(7,33,31)(8,34,32)(9,44,23)(10,45,24)(11,46,17)(12,47,18)(13,48,19)(14,41,20)(15,42,21)(16,43,22), (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,39)(18,40)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41), (1,25,35)(2,26,36)(3,27,37)(4,28,38)(5,29,39)(6,30,40)(7,31,33)(8,32,34)(9,44,23)(10,45,24)(11,46,17)(12,47,18)(13,48,19)(14,41,20)(15,42,21)(16,43,22), (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,48)(34,41)(35,42)(36,43)(37,44)(38,45)(39,46)(40,47)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,35,25)(2,36,26)(3,37,27)(4,38,28)(5,39,29)(6,40,30)(7,33,31)(8,34,32)(9,44,23)(10,45,24)(11,46,17)(12,47,18)(13,48,19)(14,41,20)(15,42,21)(16,43,22), (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,39)(18,40)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41), (1,25,35)(2,26,36)(3,27,37)(4,28,38)(5,29,39)(6,30,40)(7,31,33)(8,32,34)(9,44,23)(10,45,24)(11,46,17)(12,47,18)(13,48,19)(14,41,20)(15,42,21)(16,43,22), (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,48)(34,41)(35,42)(36,43)(37,44)(38,45)(39,46)(40,47) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,35,25),(2,36,26),(3,37,27),(4,38,28),(5,39,29),(6,40,30),(7,33,31),(8,34,32),(9,44,23),(10,45,24),(11,46,17),(12,47,18),(13,48,19),(14,41,20),(15,42,21),(16,43,22)], [(1,15),(2,16),(3,9),(4,10),(5,11),(6,12),(7,13),(8,14),(17,39),(18,40),(19,33),(20,34),(21,35),(22,36),(23,37),(24,38),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,41)], [(1,25,35),(2,26,36),(3,27,37),(4,28,38),(5,29,39),(6,30,40),(7,31,33),(8,32,34),(9,44,23),(10,45,24),(11,46,17),(12,47,18),(13,48,19),(14,41,20),(15,42,21),(16,43,22)], [(1,15),(2,16),(3,9),(4,10),(5,11),(6,12),(7,13),(8,14),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28),(33,48),(34,41),(35,42),(36,43),(37,44),(38,45),(39,46),(40,47)]])

72 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C4A4B4C4D4E4F4G4H6A6B6C6D6E6F6G8A8B8C8D8E···8L8M8N8O8P12A12B12C12D12E12F12G12H12I12J24A···24H24I24J24K24L24M···24T
order1222222233344444444666666688888···888881212121212121212121224···242424242424···24
size1133339922411333399224666611113···3999922224466662···244446···6

72 irreducible representations

dim111111111122222224444
type++++++++++++
imageC1C2C2C2C2C2C4C4C4C8S3D6D6D6C4×S3C4×S3S3×C8S32C2×S32C4×S32S32×C8
kernelS32×C8S3×C3⋊C8C12.29D6S3×C24C8×C3⋊S3C4×S32S3×Dic3C6.D6C2×S32S32S3×C8C3⋊C8C24C4×S3Dic3D6S3C8C4C2C1
# reps12121142216222244161124

Matrix representation of S32×C8 in GL4(𝔽73) generated by

10000
01000
0010
0001
,
1000
0100
0001
007272
,
1000
0100
0010
007272
,
72100
72000
0010
0001
,
0100
1000
0010
0001
G:=sub<GL(4,GF(73))| [10,0,0,0,0,10,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,0,72,0,0,1,72],[1,0,0,0,0,1,0,0,0,0,1,72,0,0,0,72],[72,72,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1] >;

S32×C8 in GAP, Magma, Sage, TeX

S_3^2\times C_8
% in TeX

G:=Group("S3^2xC8");
// GroupNames label

G:=SmallGroup(288,437);
// by ID

G=gap.SmallGroup(288,437);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,58,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^8=b^3=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽